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Abstract

A modern revolution in spatial economic modeling aims to answer quantitative
counterfactual questions by using models that feature micro-level heterogeneity. This
heterogeneity is then often assumed to come from particular parametric families—
such as Frechet in Eaton and Kortum’s (2002) Ricardian model. While these paramet-
ric choices greatly enhance the tractability of model simulations, it is unknown how
sensitive the answers to counterfactual questions are to these assumptions of conve-
nience because there are infinitely many alternative distributions of heterogeneity to
be evaluated. We overcome this challenge by building a general trade model that
leverages recent advances in the robustness literature. Our method calculates sharp
bounds on the values of model counterfactuals that could obtain—while still exactly
matching all aggregate trade data points, a gravity-like moment condition, and sat-
isfying equilibrium constraints—under all possible distributions of underlying het-
erogeneity that lie within a given divergence from a chosen reference distribution.
Applying this method to the Eaton and Kortum (2002) model, we find that the gains
from trade in these models could be several times larger or smaller than they appear
to be under standard benchmark distributions, even if heterogeneity is drawn from a
distribution that is at least as similar to Frechet as are the types of parametric alterna-
tives that are commonly explored in sensitivity analysis.
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1 Introduction

A fundamental question in the field of international economics concerns the size of the
gains from trade. In the canonical Ricardian model, these gains hinge on countries’ rela-
tive productivity levels across all the goods in the economy. When relative productivities
are the same for all goods there are no gains to be had from trading, but when relative
productivities are highly dispersed across goods then two countries can mutually gain
from specializing in the goods for which their productivity is relatively largest. However,
because these gains hinge precisely on relative productivity comparisons among goods
that countries don’t produce, they are not observable in conventional datasets.

To fill in this missing data gap, the seminal work of Eaton and Kortum (2002) posits
that countries’ productivity levels across goods are drawn independently form an extreme-
value (Frechet) distribution. Doing so results in a remarkably tractable model, and one
in which the gains from trading for any country depend on just two characteristics (the
extent to which the country is currently open to trade and the dispersion parameter of the
Frechet distribution). However, it remains an open question how sensitive are the gains
from trade in this canonical Ricardian model as one departs from Eaton and Kortum’s
(2002) functional form choice.

In this paper we develop a procedure for quantifying the sensitivity of existing esti-
mates of the gains from trade—among other counterfactual questions that quantitative
models are used for—in Ricardian models. In particular, we draw on recent advances in
the econometrics literature (Christensen and Connault, 2023) in order to consider every
distribution of productivities around the world that is within a given measure of “diver-
gence" (a standard measure of the similarity of any two probability distributions) of that
used by Eaton and Kortum (2002). We then calculate the maximum and minimum val-
ues of the gains from trade (the welfare cost of shutting down trade altogether) that can
occur in a market equilibrium for this set of distributions. In addition, a core component
of our approach is that, while considering every productivity distribution within a given
divergence of Frechet, we ensure that the resulting Ricardian model associated with each
distribution can always generate bilateral trade flows that exactly match those in the data.
This ensures that gains from trade, and other counterfactual questions, are grounded in
the realities of how much countries actually trade, along with other key empirical facts
about trade flows such as the fit of the gravity equation or the value of how trade flows
respond to trade costs (the so-called “trade elasticity").

Our main finding is that the gains from trade (for any country considered) are ex-
tremely sensitive to small departures from Eaton and Kortum’s (2002) chosen distribu-
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tion of productivities around the world. To interpret this, consider the world distribu-
tion of productivities that is used in Eaton and Kortum (2002)—one in which there are
17 countries, each with productivities drawn independently from a Frechet distribution
with dispersion parameter θ and with a location parameter chosen to match trade flows
at baseline. A commonly used value is θ = 6. For this distribution the gains from trade
for France, a country with typical openness, is 4.4% of GDP. A common form of sensitiv-
ity analysis in the literature on Ricardian models is to consider an alternative distribution
that remains Frechet but with a different dispersion parameter. For example, lowering
this parameter from θ = 6 to θ = 4.97 increases France’s gains from trade to 5.1%. The
divergence, denoted δ, between these two (Frechet) distributions is δ = 0.5. Our calcu-
lations repeat an exercise like this for all distributions that are within a given divergence
δ from that in Eaton and Kortum (2002). Doing so, we find that the minimum amount
by which France gains from trade, across all distributions with δ ≤ 0.5, is 0.05% and the
maximum possible gain is 9.2%. That is, despite matching the value of every bilateral
trade flow at baseline, there exist ways to make relatively small (i.e. divergence within
δ = 0.5) changes to the distribution that yield strikingly different gains from trade.

Our second finding repeats this exercise at larger values of δ. Consider δ = 10. One
example of a global productivity distribution that has divergence δ = 10 from that in
Eaton and Kortum (2002) is one that changes θ to 3.6, where French gains from trade are
7.0% of GDP. We find that, even with the considerable added flexibility of a high δ, the
maximum and minimum gains from trade for France are 12.3% and 0.03%, respectively.
These values are relatively close to the δ = 0.5 bounds we obtain. Our findings therefore
imply that Ricardian gains from trade in Eaton and Kortum (2002) are quite sensitive to
small changes to the productivity distribution but the range of possible gains is relatively
stable across larger changes in the distribution.

We believe these results are surprising for two reasons. First, one might conjecture
that once key facts about trade flows are matched—facts such as the extent of open-
ness, the trade elasticity, and the impressive fit of the gravity equation—then there may
be little room to maneuver in search of alternative models that generate the same data,
feature similar productivity distributions, and yet display considerably different gains
from trade. Yet our findings imply that this conjecture is wrong. Second, one might
conjecture that, because Eaton and Kortum (2002) assumed an extreme value distribu-
tion, their results might not be sensitive to this functional form assumption, at least for
the case of a large number of countries. This conjecture follows from the extremal types
theorem—analogous to the central limit theorem, but for extremal statistics rather than
means—which in this context implies that if consumers are always consuming the cheap-
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est version sold by many suppliers (who themselves sell competitively and have indepen-
dent productivity distributions) then the prices of what consumers actually buy would
be extreme-value distributed even if the suppliers’ underlying productivity distributions
were not. Our findings imply that the relevant rate of convergence in the extremal types
theorem in our context must be “slow" in the economic sense that it does not appear to
provide much robustness for the problem that interests us here (quantifying the gains
from trade in the case of 17 countries).

2 Theory

In this section we describe the core economic environment of a multi-country Ricardian
trade model with many goods and arbitrary distributions of productivities (across goods
and countries) around the world. We then describe how one can conduct counterfactual
exercises (such as computing the gains from trade for any country) in this model. Finally,
we describe the version of this model proposed by Eaton and Kortum (2002) in which the
global productivity distribution takes a particular form.

2.1 Economic environment

We begin with a standard Ricardian model of international trade.

Setup. There are D countries, potentially trading any of the goods along a continuum
indexed by ω ∈ [0, 1]. Each country produces goods using an immobile (across countries)
factor of production that is owned by a representative household there.

Demand. Preferences in each country d take the CES form across the continuum of
goods:

Ud =

(∫ 1

0
qd(ω)

σ−1
σ dω

) σ
σ−1

,

with σ capturing the elasticity of substitution and qd(ω) denoting the quantity of good
ω consumed in country d. As is standard, we work with the case in which goods are
substitutes (i.e. σ > 1) so that the gains from trade are finite.

We let pod(ω) denote the price of good ω in country d, if it were to be shipped from
country o to country d. The determination of these prices involves the supply side of the
economy, introduced below. But regardless of the determination, utility-maximization
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implies that the expenditure in d on good ω from country o will be

Xod(ω) = Yd pod(ω)1−σλd (1)

where Yd is the income (and total expenditure) in d and λd ≡
(

∑o
∫ 1

0 pod(ω)1−σdω
)−1

.

Supply. The core of the Ricardian model lies on the supply side. We assume that pro-
ducers in country o are endowed with an “idea" Uo(ω) about how to produce each good
ω. Ideas are useful because they enhance production. To describe this, we first refer to a
“latent” price, platent

od (ω), which is what the perfectly competitive producers of good ω in
o would charge in destination d if they were to sell this good in that market. These latent
prices are given by

platent
od (ω) ≡ wocod

[Uo(ω)]1/θ
(2)

where wo is the cost of a unit of the factor of production in o, and cod denotes the per-
unit cost of trading the good (e.g. due to tariffs and transport costs) from o to d. In this
expression, ideas Uo(ω) shift downwards the marginal cost of producing ω in o, and the
extent to which they do so is governed by the parameter θ > 0. In particular, when θ is
low, marginal costs, and hence prices, are relatively more sensitive to the quality of ideas.

Because the good ω is homogeneous and there is perfect competition, the actual price
of the version of good ω that hails from o and is sold in d must satisfy

pod(ω) =

platent
od (ω) if o = arg mino′∈D platent

o′d (ω),

∞ otherwise,
(3)

with the convention that Xod(ω) = 0 whenever pod(ω) = ∞. That is, country d only buys
from the minimum-price supplier of any good.

Finally, we specify trade costs cod as a function of ad-valorem tariffs (denoted tod) and
transport costs (A−1

od ), namely
cod = (1 + tod)A−1

od . (4)

In this sense, Aod can be thought of as a measure of o’s productivity in shipping to d.
Tariffs do not apply on domestic trade, so tdd = 0 for all d.

Equilibrium. We let Lo denote the (exogenous) supply of the factor of production in o.
A competitive, balanced-trade, global equilibrium in this Ricardian model is then one in
which the factor market clears in all countries. This requires that the vector of wages wo
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satisfies

Yo ≡ Ro + woLo = ∑
d

∫ 1

0
Xod(ω)dω, (5)

where Ro denotes the tariff revenue collected by country o.

2.2 Stochastic representation

The key ingredient of this Ricardian model is the distribution of each country’s ideas,
Uo(ω). For example, if ideas were to be distributed in such a way that they are perfectly
correlated across countries (i.e. Uo(ω) = αUo′(ω) for some α > 0 for any pair of countries
o and o′) then no country would have a comparative advantage in any good and there
would be no trade (or gains from trade). On the other hand, if countries’ distributions are
relatively uncorrelated, or even negatively correlated, then a rationale for international
specialization and hence trade emerges in the competitive equilibrium.

To emphasize such distributions we, like Eaton and Kortum (2002), use notation that
invokes a stochastic representation (even though, applying a law-of-large-numbers con-
vention to the continuum of goods, this is merely notational). Letting F denote the arbi-
trary cumulative distribution function (CDF) of the global distribution of Uo(ω)—across
all countries o and all goods ω—we can write the key equations for λd and equilibrium
(5) in this stochastic notation as

λ−1
d = EF

[
∑
o

pod(ω)1−σ

]
(6)

Ro + woLo = ∑
d
EF [Xod(ω)] , (7)

where EF [·] denotes an expectation over the ideas distributed according to the CDF, F.

2.3 Counterfactuals

Our goal is to study how economic conditions in any given country d respond to coun-
terfactual changes in the exogenous primitives of this model. In particular, we imagine
a generic change from the set of tariffs {t} to the set {t′}, or from the set of factor en-
dowments {L} to the set {L′}. One central counterfactual exercise of interest concerns
the gains from trade for country d, an object that is defined as the inverse of the welfare
cost to country d from changing its import tariffs from {td} to the tariffs that would imply
autarky (i.e. tod = ∞ for all o ̸= d).
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A counterfactual equilibrium is one in which all endogenous variables have changed
correspondingly (e.g. the wage in country o has changed from wo to w′

o) so as to satisfy
the counterfactual equilibrium values that solve:

(λ′
d)

−1 = EF

[
p′od(ω)1−σ

]
, (8)

Y′
d = R′

d + w′
dL′

d, (9)

X′
od(ω) = Y′

d p′od(ω)1−σλ′
d, (10)

Y′
o = ∑

d
EF
[
X′

od(ω)
]

, (11)

and where the prices p′od follow from (3) but evaluated at latent prices now given by
w′

o(1 + t′od)A−1
od [Uo(ω)]−1/θ.

After determining the values of all endogenous variables in this counterfactual equi-
librium, we then solve for a particular function of those values that is of interest. For
example, we can define (as standard) the gains from trade for country d as (one minus)
the proportional change in the real income of factor owners in d when that country’s trade
moves from its current level to autarky. Then the counterfactual calculation of interest is
given by

κ ≡ 1 −
Y′

d
Yd

(
λ′

d
λd

) 1
1−σ

(12)

when the values of (Yd, λd) and (Y′
d, λ′

d) are calculated as their corresponding equilibrium
values in the economy with tariffs {t} set to their factual values and {t′} set such that
country d is in autarky, respectively. Additional sets of counterfactual calculations are
just as feasible.1

2.4 The Eaton and Kortum (2002) reference case

The seminal model of Eaton and Kortum (2002) is a special case of the framework intro-
duced above. In particular, Eaton and Kortum (2002) proposed the enormously tractable
assumption that the global distribution of ideas F takes a particular form—which we de-
note by F∗—in which each country o draws its idea Uo(ω) for each good ω independently
and identically from an exponential distribution with location parameter equal to one, ie
Exp(1). It is worth emphasizing that this involves three separate types of restrictions rel-
ative to the unrestricted F: (i) countries’ distributions are independent from one another,
so the joint global distribution is the product of country-specific marginal distributions;

1In particular, for any known function k(·), the methods described below can be applied to any coun-
terfactual calculation that takes the form κ = EF[k({U}{w, w′}, {λ, λ′}, {t, t′}, {L, L′}{A}, θ, σ)].
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(ii) countries all share a common marginal distribution; and (iii) the common marginal
distribution that countries share takes the particular form of Exp(1).

This presentation differs from that in Eaton and Kortum (2002) in two respects. The
first difference is merely notational. We follow Alvarez and Lucas (2007) in referring
to ideas that are distributed Exp(1), and where ideas enter production in a way that is
shifted multiplicatively by the cost-shifters Aod in (4) and scaled by the technology pa-
rameter θ in (3); by contrast, in the Eaton and Kortum (2002) presentation of technology,
productivities are drawn from a Frechet distribution that has a separate location parame-
ter for each country and a common scale parameter. Standard properties of the Exponen-
tial and Frechet distributions imply the equivalence between these two conventions. The
second difference offers slightly more generality: Eaton and Kortum (2002) has country-
specific shifters (isomorphic to Ao rather than Aod). However, this added generality has
become conventional in more recent work (such as Dekle et al. (2008)).

3 Estimation

Answering the counterfactual questions posed above is impossible without estimates of
the model’s exogenous features. These include both observed inputs (tariffs {t} and en-
dowments {L}) and unobserved parameters (the demand elasticity σ, the technology
stretcher θ, and the set of technology shifters {A}). And perhaps most fundamentally
of all, this includes the global distribution of ideas F that governs comparative advantage
and trade possibilities.

3.1 Estimation in Eaton and Kortum (2002)

Eaton and Kortum (2002) pioneered the estimation of the unobserved inputs necessary
to do counterfactuals in their version of the continuum of goods Ricardian model. In
particular, they noted that all of the necessary inputs could be estimated from aggregate
(country-to-country) trade data, without the need to observe micro-data on production,
productivity, or specialization.2

2This use of aggregate data offers three advantages beyond mere convenience. First, it avoids the need
to take a stand on how the products ω map into product categories in any available dataset, let alone one
that is globally comparable. Second, as with any competitive model with constant returns technologies,
the Ricardian model does not make a prediction about which firms will produce which products within a
given country; so even if appropriate micro-data were available it could not be easily mapped to the model.
Finally, the essence of the Ricardian model is complete specialization—a country gains from trade because
of the goods that it does not produce in the trading equilibrium—so an unavoidable selection problem
confronts attempts to measure productivities for non-produced goods.
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In terms of the model above, we let the aggregate (across all goods ω) value of trade
exported from country o to country d be denoted Xod ≡

∫ 1
0 Xod(ω)dω. And we let X̃od de-

note the corresponding equivalent in an available dataset from the global cross-section of
interest. Then, as Eaton and Kortum (2002) showed, in the case of F = F∗, the parameter
θ can be estimated as the slope coefficient β in a bilateral gravity regression of the form

ln X̃od = αo + αd + β ln(1 + tod) + εod, (13)

where αo and αd denote exporter and importer fixed effects, respectively, and εod is a
residual. In particular, if εod is mean independent of ln(1 + tod), then the OLS estimate of
β will be an unbiased estimator of −θ. Further, up to a normalization, the fitted values of
the residual will satisfy ε̂od = θ̂ ln Aod, allowing estimation of each Aod as well. Having
estimated all of the model parameters in this way the estimated Eaton and Kortum (2002)
model perfectly matches all of the D2 bilateral values of aggregate trade, X̃od.

3.2 Estimation beyond Eaton and Kortum (2002)

Having seen how estimation works in the Eaton and Kortum (2002) case, when F = F∗,
our goal now is to replicate these steps for the case in which F is unrestricted except
that it lies within the same “neighborhood" as F∗. We begin by imposing the same data
restrictions as were imposed imposed by the Eaton and Kortum (2002) procedure, but in
the setting of a more general F. In particular, the above gravity estimation equation (13)
can be equivalently written as

∑
o,d

(
∆o1∆d1EF∗ [ln Xod(ω)]

) (
∆o1∆d1 ln(1 + tod)

)
= θ

(
∑
o,d

∆o1∆d1 ln(1 + tod)

)2

, (14)

where the notation ∆o1yo denotes differencing with respect to a reference origin country,
i.e. ∆o1yo ≡ yo − yo1 , etc. It follows that the analogous moment condition for the case of
general F is simply

∑
o,d

(
∆o1∆d1EF [ln Xod(ω)]

) (
∆o1∆d1 ln(1 + tod)

)
= θ

(
∑
o,d

∆o1∆d1 ln(1 + tod)

)2

. (15)

Likewise, the Dekle et al. (2008) tradition of ensuring that each of the D2 bilateral
values of aggregate trade, X̃od, can be perfectly matched by the estimated model amounts
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to ensuring that the moment
EF [Xod(ω)] = X̃od, (16)

holds for every pair of countries, o and d.
It may seem tempting to use the moments in (15) and (16) to estimate both the model’s

parameters (θ and all Aod values) and the distribution F. But this is impossible—indeed,
the model’s parameters were only just identified even in the Eaton and Kortum (2002)
case in which F was known to be F∗.

Therefore, rather than seeking to estimate all of the model’s unknowns (θ, {A}, and
F), we instead seek to construct the largest and smallest values of κ that are consistent
with the data moments (15) and (16) and feature an F that is within a given neighbor-
hood of the Eaton and Kortum (2002) reference distribution, F∗. In particular, we define
the neighborhood Nδ of F∗ as all distributions F ∈ Nδ that lie within a statistical diver-
gence from F∗, denoted D(F, F∗), that is less than δ. For example, a “hybrid" measure
of divergence that is well suited to applications in which F∗ is fat-tailed (like it is for the
case of the exponential distribution in Eaton and Kortum (2002)) is the following “hybrid"
divergence function

DH(F||F∗) ≡
∫

ϕ

(
f (x)
f ∗(x)

)
f ∗(x)dx, (17)

with f (·) denoting the PDF of F(·), etc., and the function ϕ(x) ≡ x log x − x + 1 for all
x ≤ e and ϕ(x) ≡ (x − e)2/(2e) + (x − e) + 1 for all x > e. This means that DH(F||F∗)

corresponds to the Kullback-Leibler divergence at low values and the χ2-divergence at
higher values.

Summarizing the discussion so far, when seeking the largest value of gains from trade
κ that are possible for any distribution of global technologies that are “close" to the Frechet
distribution in Eaton and Kortum (2002), denoted κδ, we seek to solve for:

κδ ≡ max
θ,{A},F

κ (18)

subject to DH(F||F∗) ≤ δ,

and subject to the constraints (1)-(7) (equilibrium holds in the factual economy), (8)-(11)
(equilibrium holds in the counterfactual economy), (15) (gravity), and (16) (all bilateral
trade flows in the factual equilibrium match the data). That is, we seek to estimate the
largest value for the gains from trade (for any given country d) that are consistent with the
Ricardian model whose global technology distribution F is within divergence delta of the
distribution F∗ used by Eaton and Kortum (2002), and yet which is capable of matching
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all bilateral values of trade flow data X̃od as well as the orthogonality restriction (15) that
is at the heart of the gravity equation. We will also estimate the lower bound on the value
of gains from trade, denoted κ; this is analogous to κ but with the max operator in (18)
replaced with the min operator.

While the goal of the program in (18) is well-defined, solving for the optimum required
is far from trivial. At any value of δ > 0, this is an infinite-dimensional optimization
problem that requires a search over every possible distribution F within Nδ and then, at
each candidate distribution, find the values (if any) of the parameters that allow the model
to match the required moments. Conducting such a search in the space of distributions
F is clearly infeasible. Fortunately, however, Christensen and Connault (2023) show that,
for any given value of the parameters ψ ≡ (θ, {A}), the optimization program that is
dual to (18) is feasible—it is concave, and its dimensionality is given only by the number
of constraints. This opens up the possibility of a feasible two-step procedure in which one
first, for given ψ, uses the Christensen and Connault (2023) algorithm to find κδ(ψ), and
then, second, one repeats this procedure over all ψ.

3.3 Adding Restrictions on the Productivity Distribution

The global productivity distribution F∗ used by Eaton and Kortum (2002) features three
key elements: (i) each country takes independent draws (that is, there is no cross-country
dependence or correlation across their draws), (ii) every country draws from the same
marginal distribution, and (iii) that common marginal distribution takes the particular
form of Exp(1). So far, our analysis has relaxed all three of these features by allowing
for any distribution F that lies within the neighborhood Nδ of the distribution F∗ used by
Eaton and Kortum (2002) and is capable of generating a Ricardian model that can match
all trade data. But it is natural to restrict this search to a subset of distributions F that
satisfy, in addition to these same data and economic model constraints, maintain some
(but not all) of the three restrictions in Eaton and Kortum (2002). Doing so is the goal of
this sub-section.

Common marginal distributions. We begin by retaining the restriction that countries all
have the same marginal distribution, but drop the restriction that this common marginal
needs to be Exp(1). Doing so is natural if one seeks a parsimonious Ricardian model,
where countries aren’t allowed to differ in arbitrary respects.

We encode this restriction by ensuring that the marginal distributions of idea draws
Uo are the same at a large number L of quantiles l of their marginal CDFs; as L grows
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this should provide an increasingly accurate approximation to the desired restriction that
the marginal CDFs are identical. To do this, we subdivide the support of U into L points
indexed by l and denoted by Ul.3 We then impose

EF[1{Uo < Ul}] = EF[1{Uo′ < Ul}] for all l ≤ L and o′ ̸= o. (19)

While this method works arbitrarily well for large L, in principle, one challenge in
practice occurs in regards to the likelihood of the highest-productivity idea draws, which
are particularly important for generating gains from trade. In particular, since gains from
trade depend on the price index, which is a transformation of the ηth moment of the
price draws that consumers face (with η ≡ (1 − σ)/θ), we mitigate against the risks of
inadequate upper-tail approximations by further imposing the additional constraints

EF[U
η
o 1{Uo < Ul}] = EF[U

η
o′1{Uo′ < Ul}] for all l ≤ L and o′ ̸= o. (20)

This ensures that the draws within each quantile have the same ηth moment.

Frechet marginal distributions. The previous restriction is less restrictive than Eaton
and Kortum (2002) in two respects: it allows countries’ productivity draws to be corre-
lated and it allows for each country’s marginal distribution (while common) to take any
shape (i.e. not necessarily Frechet). We can move closer to the Eaton and Kortum (2002)
case by restricting the common marginal distribution to be Frechet (i.e. Exp(1) in our
modeling convention) while still retaining the possibility that countries take correlated
(i.e. dependent) draws. Indeed, this gets closer to the case of Lind and Ramondo (2023),
who studied Ricardian models in which countries’ marginal distributions were common,
and Frechet distributed in particular, but their correlations were parameterized in vari-
ous respects. The restriction we study here is in the same spirit except that we allow for
countries to be taking draws from any joint process (formally, any copula) with Frechet
marginals (that leads to a Ricardian model that matches all data), not any particular pa-
rameterized correlation structure.

To see how this can be done, let H(·) denote the CDF of the inverse of the distribution
Exp(1). Divide the unit-interval support of H(·) into H discrete and evenly-spaced points
indexed by h. Finally, let Hh denote the value of the hth quantile of H(·). Then we can
ensure that the marginal of the distribution of ideas Uo in any country o has the same

3In practice we choose the points Ul as the L quantiles of the Exp(1) distribution. This has the advantage
of using quantiles that are spaced out in the same proportion to their distribution under F∗. We also set
L = 50.

11



marginal distribution as Exp(1) by matching each of these H quantile values, as long
as H is large enough for this approximation to be accurate. Formally, this amounts to
imposing the constraint

EF[1{Uo < Hh}] = H(Hh) for all o and all h ≤ H. (21)

In addition, for the same reasons as above, we ensure that the ηth moment of each quan-
tile of every country’s distribution is the same as that under Exp(1):

EF[U
η
o 1{Uo < Hh}] = EF∗ [Uη

o 1{Uo < Hh}] for all o and all h ≤ H. (22)

Independent draws. Finally, we can explore relaxations of Eaton and Kortum (2002) in
the opposite direction. Rather than keeping the marginals identical (or even identical and
of the Frechet form) and being flexible with cross-country productivity draw dependence,
we can instead maintain independence and be flexible with countries’ marginals. Recall
that two jointly distributed random variables are independent if and only if it is the case
that their joint CDF is equal to the product of their two marginal CDFs. Like the restric-
tion of common marginals above, we can again encode the independence restriction by
using quantiles. But doing so is considerably harder in this case because we require it
to hold not only for every country pair but also for every pair of quantiles. That is, for
independence we now impose

EF[1{Uo < Ul}1{Uo′ < Ul′}] = EF[1{Uo < Ul}]EF[1{Uo′ < Ul′}], (23)

for all pairs of countries o ̸= o′ and all pairs of points of support l ̸= l′.4 We note that the
weaker condition of no correlation can be obtained by imposing the far simpler version
based on first moments alone:

EF[UoUo′ ] = EF[Uo]EF[Uo′ ] for all o ̸= o′. (24)

3.4 Data

Our analysis draws on the data used in Eaton and Kortum (2002). In particular, we use
their same set of 17 countries and their estimated measure of trade costs (as our “tariff"
tod). But we update the bilateral trade flow matrix X̃od from that in the World Input-
Output Database for 2015.

4In practice, we again choose the points Ul as the L quantiles of the Exp(1) distribution. But the large
number of pairwise combinations requires a lower value of L than before to be feasible, so we set L = 5.
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4 Results

4.1 Interpreting measures of divergence δ

Before turning to estimates of κδ and κδ for various values of δ, we pause to anticipate the
natural question: how can one interpret the divergence implied by any given value of δ?

To provide one benchmark, consider the following exercise in sensitivity analysis
which we see as representative of common approaches in the field. Begin with the ref-
erence global productivity distribution given by that in Eaton and Kortum (2002): 17
countries, each drawing independently from a Frechet distribution whose shape parame-
ter is 6. This corresponds to our case in which F∗ is Exp(1) and the technology parameter
θ is set to θ = 6. Now consider changing the global distribution to one that remains
(independently drawn from) Frechet marginals but with a different shape parameter.

Figure 1: Divergence between Frechet distributions

Figure 1 presents the value of the divergence, as defined in equation (17), for a range
of such shape parameters. This figure allows us to compare common sensitivity analysis
directed towards the dispersion parameter θ to their implied divergences δ. For exam-
ple, reducing θ from 6 to 5 corresponds to δ = 0.5, whereas reducing it from 6 to 3.6
corresponds to δ = 10. The blue line in Figure 1 is not exactly symmetric, but it is approx-
imately so. This means that values of δ = 0.5 and δ = 10 can also be found by changing
θ (from 6) by approximately the same amounts in the positive direction, i.e. to θ = 7 and
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θ = 7.7, respectively. We will return to these benchmarks when discussing bounds on the
gains from trade in the next section.

4.2 Baseline results

We now turn to the main goal of our paper, which is to estimate bounds on the gains from
trade. We focus on the gains for France, whose extent of trade openness is in the middle
of the range for those in our sample.

Recall, our procedure solves for the maximum possible gains from trade κδ, by search-
ing over all global productivity distributions that are within divergence level δ of the
Eaton and Kortum (2002) benchmark, subject to the constraint that any such candidate
distribution can generate a Ricardian trade model with equilibrium trade flows that match
those in the data. This is equivalent to solving the program in (18). We then repeat this ex-
ercise for the minimum possible gains, κδ using the analog of (18) in which the minimum
κ is found.

While this procedure is feasible, it is computationally costly, despite the advances de-
veloped by Christensen and Connault (2023). In particular, while those authors establish
that the optimization problem in (18) is concave (and hence typically fast) for any given
value of the parameters ψ ≡ (θ, {A}), the outer loop that searches over all D(D − 1) + 1
such parameters has no guarantees (and in practice, for our problem, is typically slow,
suffering from a natural curse of dimensionality as D grows). We therefore compute
bounds (κδ and κδ) that are constrained by the fact that we hold the parameters (θ, {A})
constant at the values one would obtain when matching the trade flow and gravity equa-
tion constraints under F∗. Of course, this makes our results conservative, since expanding
the parameter search over (θ, {A}) can only widen the bounds that we report. However,
an alternative interpretation of these results is that they take the reference distribution to
be that in Eaton and Kortum (2002), and very literally so. That is, the reference distribu-
tion used below is not only Exp(1) with location and scale parameters in each country
(i.e. (θ, {A})) taken to be free technological parameters (as in the model described above)
but the particular Frechet distribution used in Eaton and Kortum (2002): a Frechet distri-
bution with dispersion parameter θ∗ and location parameters in each country pair given
by the values of {A∗}.

Figure 2 reports estimated values of κδ and κδ (for France’s gains from trade) for val-
ues of δ less than or equal to 10. These bounds are shown in blue. For reference, we
compare them to the point estimate (shown in orange) of the same counterfactual object
(French gains from trade) obtained when using the Eaton and Kortum (2002) productiv-
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ity distribution, F∗. We denote this orange-line value by κ∗. Of course, at δ = 0 the blue
and orange lines coincide, but for δ > 0 the blue bounds separate from the orange line,
since allowing for distributions F that differ from F∗ (i.e. a positive divergence δ from F∗)
permits larger or smaller gains from trade than those under Eaton and Kortum (2002).

The question of interest here is how large this separation between blue and orange is
for any given δ. Two results stand out. First, even small divergences result in economi-
cally meaningful differences in the gains from trade. For example, at δ = 0.5 we find that
the gains for France could be as low as effectively zero (i.e. κδ = 0.05%) or as high as a
value that is more than twice as large as what Eaton and Kortum (2002) would calculate
(i.e. κδ = 9.2%, whereas κ∗ = 4.4%). Recall from Figure 1 that an exercise of exploring
sensitivity within the set of Frechet distributions that are diverge from F∗ by less tahn
δ = 0.5 can be done by changing the Frechet distribution’s shape parameter from θ = 6
to θ = 5 or θ = 7. Such changes have a relatively small impact on gains from trade in the
Eaton and Kortum (2002) model, moving them from 4.4% (at θ = 6) to 5.0% and 3.8% (at
θ = 5 and θ = 7, respectively). The fact that the κδ and κδ bounds are so much wider than
this implies that the conventional way of doing robustness to Eaton and Kortum (2002) is
not exploring very much of the space of distributions that are equally dissimilar from F∗

and are equally successful at matching all data.
The second striking feature of Figure 2 is that the bounds at δ = 10 are not that much

wider than those at δ = 0.5. This implies that relatively small divergence offers many
ways to create larger or smaller gains from trade while still matching all data, but allow-
ing greater divergence doesn’t afford as much flexibility when subject to those same data
constraints.

4.3 Restricting the Global Productivity Distribution

So far we have seen how large or small the gains from trade can be for a given coun-
try (France) when the global productivity distribution F is unrestricted (other than lying
within divergence δ from F∗ and generating a Ricardian model that matches all trade
data). Yet one may be willing to restrict the set of admissible distributions F in some eco-
nomically motivated respects. We now apply the methods described in Section 3.3 to do
so.

We begin with the case in which F is restricted such that all countries have the same
marginal distribution (though this common marginal is unrestricted, as is the dependence
of the draws that countries take). Figure 3 reports (in red) the resulting values of κδ and
κδ, at various values of δ, when this restriction is imposed. This can be compared with
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Figure 2: Bounds on Gains from Trade (for France) Across Alternative Productivity Dis-
tributions (within Divergence δ from that in Eaton and Kortum (2002))

the values (in blue) seen earlier in Figure 2, but repeated here for ease of comparison, in
which F is unrestricted. Evidently, the restriction to common marginals has effectively
no impact on the lower-bound gains from trade, κδ. But it does have a modest impact
on the upper-bound, κδ, which (at the value of δ = 0.5 for example) falls from 9.2%
when F is unrestricted to 8.0% when F is restricted to have common marginals around
the world. These relatively modest impacts of what may seem like a drastic restriction
in global productivity heterogeneity—the underpinning of gains from trade in the Ricar-
dian model—are indicative of the complexities of thinking about the difference between
Ricardian models in general, and those that are restricted by the data in particular.

As discussed in Section 3.3, one may be willing to go further than this restriction of
common marginals to impose that those marginals themselves take a particular form. For
example, Lind and Ramondo (2023) explore the magnitude of gains from trade in models
where all countries have Frechet marginals but their productivity draws exhibit depen-
dence determined by various copulas. This relaxes the case of Eaton and Kortum (2002) in
which countries’ marginal distributions are Frechet and all draws are independent. The
green lines in Figure 3 explores a case that features Frechet marginals but where the de-
pendence is flexible, thus generalizing the Lind and Ramondo (2023) case to all forms of
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Figure 3: Bounds on Gains from Trade (for France) When Countries Have Restricted Pro-
ductivity Distributions

dependence that admit a distribution that has divergence within δ of Exp(1). Naturally,
this is a strictly restricted case relative to the red lines from common (but not necessar-
ily Frechet) marginals, so the bounds on gains from trade are strictly narrower than seen
before. What is perhaps surprising, however, is the fact that the lower-bound gains from
trade are only slightly different from the less-restricted cases (same marginals, in red, and
unrestricted, in blue). This suggests that the lower bound on the gains from trade, when
looking across all productivity distributions, depends primarily on the dependence of
countries’ productivity draws (which is not restricted by any of these exercises) rather
than by the shape of countries’ marginal distributions. On the other hand, the upper
bounds reported in Figure 3 do contract appreciably (by roughly a factor of two, at any
value of δ) as restrictions are added.

5 Concluding Remarks

A modern revolution in spatial economic modeling aims to answer quantitative coun-
terfactual questions by using models that feature micro-level heterogeneity. This het-
erogeneity is then often assumed to come from particular parametric families—such as
Frechet in the Eaton and Kortum (2002) model of Ricardian trade. While these parametric
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choices greatly enhance the tractability of model simulations, it is unknown how sensitive
the answers to counterfactual questions are to these assumptions of convenience because
there are infinitely many alternative distributions of heterogeneity to be evaluated.

We overcome this challenge by building a general trade model that leverages re-
cent advances in the robustness literature. Our method calculates sharp bounds on the
values of model counterfactuals that could obtain—while still exactly matching all ag-
gregate trade data points, a gravity-like moment condition, and satisfying equilibrium
constraints—under all possible distributions of underlying heterogeneity that lie within
a given divergence from a chosen reference distribution.

Applying this method to the Eaton and Kortum (2002) model, we find that the gains
from trade in these models could be several times larger or smaller than they appear
to be under standard benchmark distributions, even if heterogeneity is drawn from a
distribution that is at least as similar to Frechet as are the types of parametric alternatives
that are commonly explored in sensitivity analysis. Interestingly, the bounds that we
obtain are not very sensitive to the imposition of restrictions on the global productivity
distribution, such as that all countries share the same (unrestricted) marginal distribution.
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